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Abstract

Ranking alternatives is an important issue in rplédticriteria decision analysis (MCDA); especialhat different
approaches produce different results. This papepgses a measure of relative distance, which imgolthe
calculation of the relative position of an altematbetween the anti-ideal and the ideal for ragkim this case,
minimizing the distance to the ideal is equivalemtmaximizing the distance to the anti-ideal, se thnkings
obtained from the two criteria are the same.
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1. Introduction

Ranking a group of alternatives based on a setitefia frequently occurs in the real world. The@sated research
falls into the category of Multiple Criteria Deasi Analysis (MCDA). Numerous MCDA methods for ramdgi

alternatives have been developed [1,2]. The essareach method is the way that the performancdéseo§elected
criteria are aggregated. Once the importance df edterion is decided, the aggregate scores dcellated and the
rankings are determined.

In this sense, the most critical step is deterngiritre importance of each criterion. Usually, aralddternative is
necessary to serve as a benchmark for compariraitethatives, and the one that is closest todbaliis preferred.
Some studies [3,4] have discussed the idea thaglaither away from the negative ideal, or antialll is better,
where the negative ideal is the imaginary altemeatvhich has the smallest value in each criteridre alternatives
are ranked based on their distance to the idemhtideal.

For two alternatives with the same distance toitteal, the one which is farther away from the adal is
considered better because it is “relatively” clasethe ideal. Similarly, for two alternatives wihmilar distances to
the anti-ideal, the one which is closer to the lidegreferred. In this regard, a measure of redatlistance which
shows the relative position of an alternative friima anti-ideal to the ideal is desirable. This pdpemnulates the
problem of weight determination using a compronpsegramming technique, where the difference betwiben
performances of the alternative and the idealeatéd as the distance. The rankings of the alieesafre based on
the aggregate performance calculated from thefsgeéights. One attractive feature of the relatiiahce measure
is that the rankings obtained based on the distamtiee ideal and those obtained based on thendiste the anti-
ideal are the same.

2. Graphical Illustration

In multiple criteria analysis, there will usuallg Iseveral alternatives which are not dominatechbyothers. One of
the nondominated alternatives is chosen for impteatimn. Charnes et al. [5] proposed the DEA teghaito

calculate the relative efficiency of a group of idem making units (DMUs) which uses multiple inptd produce
multiple outputs. Each unit is allowed to use diéf# sets of weights to calculate the efficienclio3e with an
efficiency value of 1 are nondominated units. ThEDA problem can be considered as a DEA problem owith
inputs. Hence, the DEA technique can be appliedentify nondominated alternatives.
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Let Y; denote the value of thi¢h criterion,i=1,..., m, for thejth alternativej=1,..., n. The DEA model without
inputs for calculating the efficiency of tlkth alternative can be formulated as [6]:

E, = max X WY,
st XhwY; <1 j=1..,n
W 2 €, i=1..m

@

wherew; is the importance associated with ttiecriterion andsis a small positive quantity imposed to restricy a
criterion from being ignored. The most favorableigh#s are sought for each DMU in calculating itfiogncy.
This model has a dual which is exactly the saméasutput-oriented BCC model without inputs [7].

Suppose there are five alternativAsB, C, D, andE. Their performances in two criterig; andY,, are shown in
Table 1 and are depicted in Figure 1. Model (1piifies B andD as the nondominated alternatives. The piecewise
line segmentSBDTrepresent the efficiency frontier constructed fribra five alternatives. Alternativig lies on the
vertical line extended downward from the efficiatternativeD, and is called weakly efficient. Alternativésand

C lie in the interior of the area delineated by lsggmentSBDTand are thus dominated. Their efficiency valuss, a
calculated from Model (1), are the ratios @A to OA and OC to OC, respectively, wheréd' and C' are the
projections on their respective frontier facetslu@m 4 of Table 1, with the heading “DEA efficiericghows the
efficiency values of the five alternatives. Numbierparentheses are their ranks.

In this caseB andD are the candidates for selection because theyar@ominated. However, it is not clear which
one is better. Alternative is ranked the next best since it is weakly effitié-or the two dominated alternativés,
andC, C is better due to its higher efficiency value. Getmeally, the calculation of the efficiency valissbased
on the frontier facet with which the alternativec@mpared. Since the efficiency value is genewdgtiermined from
different frontier facets, different weights arghed in calculating the efficiency. Hence, theeattatives should not
be ranked simply by their efficiency values [8].
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Figure 1: Geometric interpretation of the relatpeformance compared with the iddal,

Table 1: Data and various performance measurgbdogiven example

Alternative Y, Y, DEA efficiency Absolute distance Relative distance
Ideal Anti-ideal Ideal  Anti-ideal

A 2 4 0.8 (5) (17415 (5) (37¥715 (5) 0.35(5) 0.65 (5)

B 4 5 1 1) (43115 (2) (64¥715 (4) 0.15(2) 0.85(2)

C 4 4 8/9 (4) (5¥%15 (3) (65¥715 (3) 0.20 (4) 0.80 (4)

D 5 3 1 1) %15 1)  (101Y%15 (1) 0.05(1) 0.95 (1)

E 5 2 e (3) (9115 (4)  (100Y%15 (2) 0.15(2) 0.85(2)

3. Absolute Distance

The first task in calculating the distance betwapralternative and the ideal or the anti-ideabifirtd the ideal and
the anti-ideal. The anti-ideal, which has the sesllvalue in all criteria, is easier to determifike origin is the
theoretical anti-ideal because it has a value of f&r every criterion. The ideal, on the other dhais difficult to
identify because not every criterion has a thecaéteiling.

Consider again a set nfalternatives withm criteria. The performance of alternatjvia criterioni has a value of;.
Let Y, = max {Y;, j=1,..., n} denote the largest value that appears initheriterion. Then)=(Y, , Y, ,..., Y;) is

empirically the ideal alternative. For example, itheal alternative generated from the five altéuestin Table 1 is
I=(5, 5). By the same token, if an empirical, rattiem the theoretical, anti-ideal is preferredntbae can define

I"=(Y, ,..., Y, ) as the anti-ideal, wherg™ = min{Y;, j=1,..., n} is the smallest value that appears in tte
criterion.

One of the most popular approaches for rankingredtazes is compromise programming, which is basedhe
distance between the alternative and the ideabradttives with a shorter distance to the idealcaresidered better
than those with a longer distance. Usually a weigtdpplied to the values of each criterion to maKecriteria
comparable. When no prior information is availaldee can use the information contained in the ofasi®ns to
generate the weight.

Consider the example in Table 1. et andw, be the weights of criteriy; andY,, respectively. The squared
distance between alternative(3, 4) and the ided=(5, 5) is v (5-3)]°+[w,(5-4)]’=4w + w2 . Calculating the
squared distance for the other four alternativeslite in a total squared distance off6+12w? . For general cases,

the total squared distance from all aIternativeEjlgi[Z{Elw,z(Yi* —Yij)z] . To exclude the trivial solution of =0,

one can require the aggregate performance of & @lternative to have a value of 1. Thus, rathan assigning
the weights beforehand, they are obtained by mizigithe total squared distance to the ideal:

min T, SLwW (Y - Y;)?
s.t. XYy WYi* =1 “
V\/i 2£, i= lvm

The small quantity¥ is introduced so that no criterion is ignored.

Model (2) is a quadratic program. After the optimagightsw; , i=1,..., m, are solved, the distance between each
alternative and the ideal can be calculated; thes®f the alternatives can then be determinedadJdie data in
Table 1 as an example, the optimal weightswre2/15 andw, =1/15. The ratio of the two weights &/w,=2,
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indicating that the scale of the first criterion shbbe doubled to make the two criteria compardli$éng this set of
weights, the distance from each alternative toideal, [¥ (Y, -Y;)*]“?, is calculated as shown in the fifth
column of Table 1. The corresponding ranks appeparentheses.

Compared with the results of DEA-efficiency, thendominated alternativ® is also ranked first with the absolute-
distance approach. The other nondominated altesatis the second best. The weakly efficient altexeet has a
rank of 4, instead of 3 as in the DEA-efficiencyegach. The fourth ranked alternati@,is ranked third. The fifth
ranked alternatived, remains the same. Three of the five alternathesge different ranks, which is due to every
alternative in the DEA-efficiency approach possibkEing different sets of weights for comparison,ilevtthe
absolute-distance approach requires all altermativeuse the same set of weights. According to Aeteal. [8],
results from different sets of weights are notahli for ranking.

In compromise programming, alternatives are rardgambrding to their distance to the ideal or todhg-ideal. The
alternative which is closest to the ideal need motthe same as that farthest away from the ardai-ide this
example, the origin is the theoretical anti-iddé&traative because it has the smallest value ih bdteria. Using
the weights ofw, =2/15 andw, =1/15 obtained from Model (2), the distances to #mti-ideal for the five

alternatives are (39130, (64}%130, (65}%130, (101)%130, and (103%/130, respectively. The corresponding
ranks are 5, 4, 3, 1, and 2, respectively, as shiawhe sixth column of Table 1. Alternati®andE have ranks
different from those obtained from the distanceh® ideal. Compared to the DEA-efficiency approablere are
three alternatives whose ranks are different.

The reason for obtaining different rankings is dinpat the absolute-distance approach only consitte distance
to the ideal, disregarding the distance to theitrid one can find a distance measure which tddathk the ideal and
anti-ideal into consideration, then consistent nag& may be obtained.

4. Relative Distance
The aggregate performance of any alternative isavtiian that of the ideal, no matter what weightsagplied to

individual criteria. Thus, we have= Y1, wY; I3 WY, <1, whereP; is the aggregate performance of ftie
alternative relative to the ideal. The ideal als&ive has a relative performance value of 1:
P*= M wY /3wy, =1. If we let Y% wY, , which is the aggregate performance of the idiaireative, be equal
to 1 to standardize the weightg, then 3T, wY; becomes the relative performance of jtte alternative. The

difference betweef; and 1, denoted by, is the relative distance between jtrealternative and the ideal in terms
of the aggregate performance. It is also the comefgary performance of this alternative. The pnoble then
transformed to finding the set of weights i=1,..., m, which produce the smallest total squared diffeedmetween
the relative performance of the alternative and dfizhe ideal. The associated model is:

min ¥7,s
st XhwY, +s, =1 j=1..n 3)
Zinllei* =1

w =g, i=1.,m

Note that the distance variatdgis always positive because every alternalfyés dominated by the idedY*.
After the optimal weightsv , i=1,...,m, are obtained, the relative performance ofjthalternative is calculated as

™, WY, . The relative distance to the idealds=1- ¥, WY,; .

Comparing Model (3) with the conventional DEA modeithout inputs, i.e., Model (1), it is noted thtite
constraints of the two models are essentially Hrees except that Model (3) has an extra consteasbciated with
the ideal alternative. In the context of DEA, tHeal alternative is also included to constructgreduction frontier.
The difference between the two models is the objedunction; Model (1) maximizes the aggregatefgranance
of each specific alternative in each calculatiorhilev Model (3) minimizes the total squared complatagy
performance, or the total squared relative distancthe ideal, of all alternatives in one calcuati The weights
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used by each alternative in calculating the aggesparformance can be different in Model (1); they the same in
Model (3). They are the general consensus of tteenatives being evaluated. The same set of wejginigdes a
common base for comparing different alternatives.

Geometrically, the frontier constructed by Mode] id a set of connected facets, while that constdiby Model
(3) is a single-facet hyperplan&, wY, =1, passing through the ideal. Note that hers in Y, wY, =1 are
constants andy;'s are coordinates. Model (3) can be considerech aommon-weight DEA model [9]. The
hyperplane}X, wY; =1- s, which passes through alternatjyés parallel to the frontiep.", wY, =1, with a distance
of s. Sinces represents the relative position of alternafifeom the origin to its projection on the frontiérjs a
relative distance measure. Substitutisg in the objective function of Model (3) by {1XZ wY; ), or

(Zmwy - >m wY; ), from the constraints and omitting the first setonstraints, Model (3) can be simplified to:

min S [Smw (Y =Y, )2
st ThLwY =1 ¥
w=g, i=1.m

The relative distance to the ide&l",w (Y -Y;), is the basis for ranking.

The aggregate performancgy, wY; , represents the relative distance of alterngtite the origin. Larger values
imply a location farther away from the anti-ide@ince 7, wY; is the complement o, the alternative with the

smallest distance to the idesl, obviously has the largest distance to the am@id>;’;, wY; . Hence, the relative
distances of an alternative to the ideal and tatiteideal produce the same rankings.

For cases where the origin is not suitable to leeatfiti-ideal, and the empirical anti-ideBk(Y,", Y, ,..., Y..), is
preferred, therP;, the aggregate performance of fitfe alternative relative to the ideal, can be adjdsby the
aggregate performance of the anti-ideal Bs= X2, w (Y; -Y) /I w (Y -Y"). The geometric meaning is a

translation of the origin td. In this case, the adjusted performance of thaligg™w (Y, -Y"), is set to 1 to
standardize the weiglw;,. Furthermore, since the scale¥gfcould be very large or very small, which would mak
the lower boundt in w; = £ difficult to determine, a relative bound (Y, -Y,”) =b, which requires the contribution
of each criterion to the aggregate performanceetgrieater than a proportidm is recommended. It is easy to prove

that, with this adjustment, the obtained weightsdpice the same rankings for the criterion of “ctdsethe ideal is
better” and that of “farther away from the antidadles better”.

Following Model (4), the optimal weights obtainext the data in Table 1 ang =0.15 andw, =0.05. The frontier

for calculating the aggregate performance of edtehnative is a straight line, 0.Y5+ 0.05v,= 1, passing through
the ideal with a slope ofw,/w,= —3. The relative distance to the ideal for altenejj s, is the ratio of the distance
between the alternative and its projection on tbatfer to the distance between the origin andpttogection point

on the frontier. Its complement-4=31, wY; , is the relative distance to the anti-ideal, whiekalso the relative

performance value of this alternative. The last wedumns of Table 1 show the relative distanceshef five
alternatives to the ideal and anti-ideal, respetiwith their ranks parenthesized. As expectled,rankings based
on these two distance measures are exactly the same

In Figure 1, every alternative is compared with ptejection on the frontielJW, in calculating the aggregate
performance. For example, the performance value wf the ratio ofOD to OD*, whereD* is the projection oD
on the frontierDD*/ OD* is the relative distance to the ideal aD®/OD* is the relative distance to the anti-ideal.
Let U'W be a straight line passing throughand parallel to the frontiddW. This line is represented by 0¥;5
0.05Y, = 1- 5. Suppose that the line connecting the origin dedideal point intersects ling’W at D°. It can be
shown thatOD/OD*=0D"OlI. Since the length ddl has been rescaled toQD/OD* is equal to the length d®D°,
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or w,Yip + W>Yop, Which is the aggregate performancelaf Thus, comparing an alternative with the ideal is
equivalent to comparing it with its projection onetfrontier. Similarly, one can draw a paralleleli”W",
0.15v;+0.05Y, =1-s,, for alternativeA, which intersects lingdl at A°. The length ofOA® is the aggregate
performance of alternativd, with a value ofw;Y;5 + W,Yo5. For the general case of alternatives,n parallel
hyperplanes are constructed; each has a distargséodhe frontier. The alternative with the shortgistance to the
frontier has the highest rank.

For a set of weightsy , i=1,...,m, “ Y™ WY, = 1” represents a hyperplane passing through tbal id Following

the above discussion, the relative performancenoélternative is equal to the ratio of the distabetween the
origin and the alternative to that between theiorignd the projection of the alternative on the drptane. This
value is equal to 4s, the complement of the distance between the hrhjfperplanes passing through the
alternative and the ideal. Therefore, this set efghts produces the same rankings for the critefri@loser to the
ideal is better” and “farther away from the antddlis better”.

5. Conclusion

The conventional idea of seeking the shortest absalistance between the alternative and the idedICDA may
produce results which are different from those ioleich by seeking the longest absolute distance legtvike
alternative and the anti-ideal. This paper showed when the measure of distance is changed frcsolate to
relative, that is, the relative position of theeaftative between the anti-ideal and the ideal, thenresultant
rankings from the two ideas are consistent.

Since the weights used for calculating the aggeegatformance for the alternatives in the propasethod are the
most favorable for all alternatives in a compromsssse, the resultant rankings are convincing. Mane the
weights are not subjectively determined by humavtich sometimes creates controversy; hence, thdtsesre
more acceptable when the alternatives are peopleganizations.
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