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Abstract 
 
Ranking alternatives is an important issue in multiple criteria decision analysis (MCDA); especially that different 
approaches produce different results. This paper proposes a measure of relative distance, which involves the 
calculation of the relative position of an alternative between the anti-ideal and the ideal for ranking. In this case, 
minimizing the distance to the ideal is equivalent to maximizing the distance to the anti-ideal, so the rankings 
obtained from the two criteria are the same.  
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1. Introduction 
Ranking a group of alternatives based on a set of criteria frequently occurs in the real world. The associated research 
falls into the category of Multiple Criteria Decision Analysis (MCDA). Numerous MCDA methods for ranking 
alternatives have been developed [1,2]. The essence of each method is the way that the performances of the selected 
criteria are aggregated. Once the importance of each criterion is decided, the aggregate scores are calculated and the 
rankings are determined. 
 
In this sense, the most critical step is determining the importance of each criterion. Usually, an ideal alternative is 
necessary to serve as a benchmark for comparing all alternatives, and the one that is closest to the ideal is preferred. 
Some studies [3,4] have discussed the idea that being farther away from the negative ideal, or anti-ideal, is better, 
where the negative ideal is the imaginary alternative which has the smallest value in each criterion. The alternatives 
are ranked based on their distance to the ideal or anti-ideal.  
 
For two alternatives with the same distance to the ideal, the one which is farther away from the anti-ideal is 
considered better because it is “relatively” closer to the ideal. Similarly, for two alternatives with similar distances to 
the anti-ideal, the one which is closer to the ideal is preferred. In this regard, a measure of relative distance which 
shows the relative position of an alternative from the anti-ideal to the ideal is desirable. This paper formulates the 
problem of weight determination using a compromise programming technique, where the difference between the 
performances of the alternative and the ideal is treated as the distance. The rankings of the alternatives are based on 
the aggregate performance calculated from the set of weights. One attractive feature of the relative distance measure 
is that the rankings obtained based on the distance to the ideal and those obtained based on the distance to the anti-
ideal are the same. 
 
2. Graphical Illustration 
In multiple criteria analysis, there will usually be several alternatives which are not dominated by the others. One of 
the nondominated alternatives is chosen for implementation. Charnes et al. [5] proposed the DEA technique to 
calculate the relative efficiency of a group of decision making units (DMUs) which uses multiple inputs to produce 
multiple outputs. Each unit is allowed to use different sets of weights to calculate the efficiency. Those with an 
efficiency value of 1 are nondominated units. The MCDA problem can be considered as a DEA problem without 
inputs. Hence, the DEA technique can be applied to identify nondominated alternatives. 
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Let Yij denote the value of the ith criterion, i=1,…, m, for the jth alternative, j=1,…, n. The DEA model without 
inputs for calculating the efficiency of the kth alternative can be formulated as [6]: 
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where wi is the importance associated with the ith criterion and ε is a small positive quantity imposed to restrict any 
criterion from being ignored. The most favorable weights are sought for each DMU in calculating its efficiency. 
This model has a dual which is exactly the same as the output-oriented BCC model without inputs [7].  
 
Suppose there are five alternatives, A, B, C, D, and E. Their performances in two criteria, Y1 and Y2, are shown in 
Table 1 and are depicted in Figure 1. Model (1) identifies B and D as the nondominated alternatives. The piecewise 
line segments SBDT represent the efficiency frontier constructed from the five alternatives. Alternative E lies on the 
vertical line extended downward from the efficient alternative D, and is called weakly efficient. Alternatives A and 
C lie in the interior of the area delineated by line segments SBDT and are thus dominated. Their efficiency values, as 
calculated from Model (1), are the ratios of OA to OA’ and OC to OC’, respectively, where A’ and C’ are the 
projections on their respective frontier facets. Column 4 of Table 1, with the heading “DEA efficiency”, shows the 
efficiency values of the five alternatives. Numbers in parentheses are their ranks. 
 
In this case, B and D are the candidates for selection because they are nondominated. However, it is not clear which 
one is better. Alternative E is ranked the next best since it is weakly efficient. For the two dominated alternatives, A 
and C, C is better due to its higher efficiency value. Geometrically, the calculation of the efficiency value is based 
on the frontier facet with which the alternative is compared. Since the efficiency value is generally determined from 
different frontier facets, different weights are applied in calculating the efficiency. Hence, the alternatives should not 
be ranked simply by their efficiency values [8]. 
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Figure 1: Geometric interpretation of the relative performance compared with the ideal, I 

 
Table 1: Data and various performance measures for the given example 

───────────────────────────────────────────────────────────────── 
 Alternative Y1 Y2 DEA efficiency Absolute distance Relative distance 
      ──────────────────   ──────────── 
     Ideal Anti-ideal Ideal Anti-ideal 
───────────────────────────────────────────────────────────────── 

 A 2 4 0.8 (5) (17)1/2/15 (5) (37)1/2/15 (5) 0.35 (5) 0.65 (5) 

 B 4 5 1 (1) (4)1/2/15 (2) (64)1/2/15 (4) 0.15 (2) 0.85 (2) 

 C 4 4 8/9 (4) (5)1/2/15 (3) (65)1/2/15 (3) 0.20 (4) 0.80 (4) 

 D 5 3 1 (1) (1)1/2/15 (1) (101)1/2/15 (1) 0.05 (1) 0.95 (1) 

 E 5 2 1−ε (3) (9)1/2/15 (4) (100)1/2/15 (2) 0.15 (2) 0.85 (2) 
───────────────────────────────────────────────────────────────── 

 
3. Absolute Distance 
The first task in calculating the distance between an alternative and the ideal or the anti-ideal is to find the ideal and 
the anti-ideal. The anti-ideal, which has the smallest value in all criteria, is easier to determine. The origin is the 
theoretical anti-ideal because it has a value of zero for every criterion. The ideal, on the other hand, is difficult to 
identify because not every criterion has a theoretical ceiling. 
 
Consider again a set of n alternatives with m criteria. The performance of alternative j in criterion i has a value of Yij. 

Let *
iY = max {Yij, j=1,…, n} denote the largest value that appears in the ith criterion. Then, I=( *

1Y , *
2Y ,…, *

mY ) is 

empirically the ideal alternative. For example, the ideal alternative generated from the five alternatives in Table 1 is 
I=(5, 5). By the same token, if an empirical, rather than the theoretical, anti-ideal is preferred, then one can define 

I−=( −
1Y ,…, −

mY ) as the anti-ideal, where −iY = min{Yij, j=1,…, n} is the smallest value that appears in the ith 

criterion.  
 
One of the most popular approaches for ranking alternatives is compromise programming, which is based on the 
distance between the alternative and the ideal. Alternatives with a shorter distance to the ideal are considered better 
than those with a longer distance. Usually a weight is applied to the values of each criterion to make all criteria 
comparable. When no prior information is available, one can use the information contained in the observations to 
generate the weight.  
 
Consider the example in Table 1. Let w1 and w2 be the weights of criteria Y1 and Y2, respectively. The squared 

distance between alternative A=(3, 4) and the ideal I=(5, 5) is [w1(5−3)]2+[w2(5−4)]2=4 2
1w + 2

2w . Calculating the 

squared distance for the other four alternatives results in a total squared distance of 621w +12 2
2w . For general cases, 

the total squared distance from all alternatives is ∑ ∑ −= =
n
j

m
i ijii YYw1 1

2*2 ])([ . To exclude the trivial solution of *iw =0, 

one can require the aggregate performance of the ideal alternative to have a value of 1. Thus, rather than assigning 
the weights beforehand, they are obtained by minimizing the total squared distance to the ideal: 
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The small quantity ε is introduced so that no criterion is ignored.  
 

Model (2) is a quadratic program. After the optimal weights *
iw , i=1,…, m, are solved, the distance between each 

alternative and the ideal can be calculated; the ranks of the alternatives can then be determined. Using the data in 

Table 1 as an example, the optimal weights are *
1w =2/15 and *

2w =1/15. The ratio of the two weights is w1/w2=2, 
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indicating that the scale of the first criterion must be doubled to make the two criteria comparable. Using this set of 

weights, the distance from each alternative to the ideal, 2/1
1

2*2 ])([∑ −=
m
i ijii YYw , is calculated as shown in the fifth 

column of Table 1. The corresponding ranks appear in parentheses. 
 
Compared with the results of DEA-efficiency, the nondominated alternative D is also ranked first with the absolute-
distance approach. The other nondominated alternative B is the second best. The weakly efficient alternative E has a 
rank of 4, instead of 3 as in the DEA-efficiency approach. The fourth ranked alternative, C, is ranked third. The fifth 
ranked alternative, A, remains the same. Three of the five alternatives have different ranks, which is due to every 
alternative in the DEA-efficiency approach possible using different sets of weights for comparison, while the 
absolute-distance approach requires all alternatives to use the same set of weights. According to Adler et al. [8], 
results from different sets of weights are not suitable for ranking. 
 
In compromise programming, alternatives are ranked according to their distance to the ideal or to the anti-ideal. The 
alternative which is closest to the ideal need not be the same as that farthest away from the anti-ideal. In this 
example, the origin is the theoretical anti-ideal alternative because it has the smallest value in both criteria. Using 

the weights of *
1w =2/15 and *

2w =1/15 obtained from Model (2), the distances to the anti-ideal for the five 

alternatives are (37)1/2/130, (64)1/2/130, (65)1/2/130, (101)1/2/130, and (100)1/2/130, respectively. The corresponding 
ranks are 5, 4, 3, 1, and 2, respectively, as shown in the sixth column of Table 1. Alternative B and E have ranks 
different from those obtained from the distance to the ideal. Compared to the DEA-efficiency approach, there are 
three alternatives whose ranks are different. 
 
The reason for obtaining different rankings is simply that the absolute-distance approach only considers the distance 
to the ideal, disregarding the distance to the origin. If one can find a distance measure which takes both the ideal and 
anti-ideal into consideration, then consistent rankings may be obtained. 
 
4. Relative Distance 
The aggregate performance of any alternative is worse than that of the ideal, no matter what weights are applied to 

individual criteria. Thus, we have Pj= ∑ =
m
i iji Yw1 / ∑ =

m
i iiYw1

* <1, where Pj is the aggregate performance of the jth 

alternative relative to the ideal. The ideal alternative has a relative performance value of 1: 

P*= ∑ =
m
i iiYw1

* /∑ =
m
i iiYw1

* =1. If we let ∑ =
m
i iiYw1

* , which is the aggregate performance of the ideal alternative, be equal 

to 1 to standardize the weights wi, then ∑ =
m
i iji Yw1  becomes the relative performance of the jth alternative. The 

difference between Pj and 1, denoted by sj, is the relative distance between the jth alternative and the ideal in terms 
of the aggregate performance. It is also the complementary performance of this alternative. The problem is then 
transformed to finding the set of weights wi, i=1,…, m, which produce the smallest total squared difference between 
the relative performance of the alternative and that of the ideal. The associated model is: 
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Note that the distance variable sj is always positive because every alternative Yj is dominated by the ideal I=Y*. 

After the optimal weights *
iw , i=1,…, m, are obtained, the relative performance of the jth alternative is calculated as 

∑ =
m
i iji Yw1

* . The relative distance to the ideal is *
js =1−∑ =

m
i iji Yw1

* . 
 
Comparing Model (3) with the conventional DEA model without inputs, i.e., Model (1), it is noted that the 
constraints of the two models are essentially the same, except that Model (3) has an extra constraint associated with 
the ideal alternative. In the context of DEA, the ideal alternative is also included to construct the production frontier. 
The difference between the two models is the objective function; Model (1) maximizes the aggregate performance 
of each specific alternative in each calculation, while Model (3) minimizes the total squared complementary 
performance, or the total squared relative distance to the ideal, of all alternatives in one calculation. The weights 
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used by each alternative in calculating the aggregate performance can be different in Model (1); they are the same in 
Model (3). They are the general consensus of the alternatives being evaluated. The same set of weights provides a 
common base for comparing different alternatives. 
 
Geometrically, the frontier constructed by Model (1) is a set of connected facets, while that constructed by Model 
(3) is a single-facet hyperplane, ∑ =

m
i iiYw1 =1, passing through the ideal. Note that here wi’s in ∑ =

m
i iiYw1 =1 are 

constants and Yi’s are coordinates. Model (3) can be considered as a common-weight DEA model [9]. The 
hyperplane ∑ =

m
i iiYw1 =1− sj, which passes through alternative j, is parallel to the frontier ∑ =

m
i iiYw1 =1, with a distance 

of sj. Since sj represents the relative position of alternative j from the origin to its projection on the frontier, it is a 
relative distance measure. Substituting sj in the objective function of Model (3) by (1− ∑ =

m
i iji Yw1 ), or 

(∑ =
m
i iiYw1

* − ∑ =
m
i iji Yw1 ), from the constraints and omitting the first set of constraints, Model (3) can be simplified to: 
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The relative distance to the ideal, ∑ −=
m
i ijii YYw1

* )( , is the basis for ranking. 

 
The aggregate performance, ∑ =

m
i iji Yw1 , represents the relative distance of alternative j to the origin. Larger values 

imply a location farther away from the anti-ideal. Since ∑ =
m
i iji Yw1  is the complement of sj, the alternative with the 

smallest distance to the ideal, sj, obviously has the largest distance to the anti-ideal, ∑ =
m
i iji Yw1 . Hence, the relative 

distances of an alternative to the ideal and to the anti-ideal produce the same rankings. 
 

For cases where the origin is not suitable to be the anti-ideal, and the empirical anti-ideal, I−=( −
1Y , −

2Y ,…, −
mY ), is 

preferred, then Pj, the aggregate performance of the jth alternative relative to the ideal, can be adjusted by the 

aggregate performance of the anti-ideal as: Pj =∑ −=
−m

i iiji YYw1 )( / ∑ −=
−m

i iii YYw1
* )( . The geometric meaning is a 

translation of the origin to I−. In this case, the adjusted performance of the ideal, ∑ −=
−m

i iii YYw1
* )( , is set to 1 to 

standardize the weight wi. Furthermore, since the scale of Yij could be very large or very small, which would make 

the lower bound ε in wi ≥ ε difficult to determine, a relative bound, )( * −− iii YYw ≥ b, which requires the contribution 

of each criterion to the aggregate performance to be greater than a proportion b, is recommended. It is easy to prove 
that, with this adjustment, the obtained weights produce the same rankings for the criterion of “closer to the ideal is 
better” and that of “farther away from the anti-ideal is better”. 

 

Following Model (4), the optimal weights obtained for the data in Table 1 are *1w =0.15 and *
2w =0.05. The frontier 

for calculating the aggregate performance of each alternative is a straight line, 0.15Y1 + 0.05Y2 = 1, passing through 
the ideal with a slope of −w1/w2= −3. The relative distance to the ideal for alternative j, sj, is the ratio of the distance 
between the alternative and its projection on the frontier to the distance between the origin and the projection point 
on the frontier. Its complement, 1−sj=∑ =

m
i iji Yw1 , is the relative distance to the anti-ideal, which is also the relative 

performance value of this alternative. The last two columns of Table 1 show the relative distances of the five 
alternatives to the ideal and anti-ideal, respectively, with their ranks parenthesized. As expected, the rankings based 
on these two distance measures are exactly the same. 
 
In Figure 1, every alternative is compared with its projection on the frontier, UW, in calculating the aggregate 
performance. For example, the performance value of D is the ratio of OD to OD*, where D* is the projection of D 
on the frontier. DD*/OD* is the relative distance to the ideal and OD/OD* is the relative distance to the anti-ideal. 
Let U’W’ be a straight line passing through D and parallel to the frontier UW. This line is represented by 0.15Y1 + 
0.05Y2 = 1− sD. Suppose that the line connecting the origin and the ideal point intersects line U’W’ at Do. It can be 
shown that OD/OD*=ODo/OI. Since the length of OI has been rescaled to 1, OD/OD* is equal to the length of ODo, 
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or w1Y1D + w2Y2D, which is the aggregate performance of D. Thus, comparing an alternative with the ideal is 
equivalent to comparing it with its projection on the frontier. Similarly, one can draw a parallel line U”W”, 
0.15Y1+0.05Y2 =1− sA, for alternative A, which intersects line OI at Ao. The length of OAo is the aggregate 
performance of alternative A, with a value of w1Y1A + w2Y2A. For the general case of n alternatives, n parallel 
hyperplanes are constructed; each has a distance of sj to the frontier. The alternative with the shortest distance to the 
frontier has the highest rank. 
 

For a set of weights iŵ , i=1,…, m, “ ∑ =
m
i iiYw1

*ˆ = 1” represents a hyperplane passing through the ideal I. Following 

the above discussion, the relative performance of an alternative is equal to the ratio of the distance between the 
origin and the alternative to that between the origin and the projection of the alternative on the hyperplane. This 
value is equal to 1− sj, the complement of the distance between the parallel hyperplanes passing through the 
alternative and the ideal. Therefore, this set of weights produces the same rankings for the criteria of “closer to the 
ideal is better” and “farther away from the anti-ideal is better”. 
 
5. Conclusion 
The conventional idea of seeking the shortest absolute distance between the alternative and the ideal in MCDA may 
produce results which are different from those obtained by seeking the longest absolute distance between the 
alternative and the anti-ideal. This paper showed that when the measure of distance is changed from absolute to 
relative, that is, the relative position of the alternative between the anti-ideal and the ideal, then the resultant 
rankings from the two ideas are consistent.  
 
Since the weights used for calculating the aggregate performance for the alternatives in the proposed method are the 
most favorable for all alternatives in a compromise sense, the resultant rankings are convincing. Moreover, the 
weights are not subjectively determined by humans, which sometimes creates controversy; hence, the results are 
more acceptable when the alternatives are people or organizations. 
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